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Directional viscous-fingering experiments are reported which extend previous studies by Rabaud,
Michalland, and Couder [Phys. Rev. Lett. 64, 184 (1990)]. With the external cylinder rotation speed V,
fixed at a small constant value, the counter-rotation speed of the inner cylinder V;, which is then the sin-
gle control parameter of the experiment, was increased or decreased in small steps. Beyond the primary
planar-cellular bifurcation of the air-oil interface, a secondary bifurcation was observed to a state with
uniform space-filling traveling cells, followed by a spatial period-doubling bifurcation. Close to these bi-
furcations, we also observed transient states with solitary traveling cells, traveling domains of tilted cells,
and mixed states of coexisting large and small traveling cells. These states resemble observations in re-
cent directional-solidification experiments on liquid crystals and eutectic alloys. We discuss these results
in the context of recent theoretical descriptions of parity-breaking tilt bifurcations and spatial period-
doubling bifurcations based on k-2k mode-interaction models.

PACS number(s): 47.20.Ky, 47.20.Hw, 68.10. —m

I. INTRODUCTION

Pattern-forming instabilities of quasi-one-dimensional
fronts exhibit a rich variety of dynamical behavior and
have been studied extensively in recent years. The well-
known Mullins-Sekerka free-solidification instability and

the Saffman-Taylor instability, which both involve the ex-

perimental complication of uncontrolled movement of
the front, each have an analog in which the front is con-
veniently localized in the laboratory frame of reference:
directional solidification and directional viscous fingering
(DVF), respectively. In directional solidification, the po-
sition of the front is constrained by a temperature gra-
dient, while in DVF, a gradient in the thickness of the
fluid layer provides the constraint. For both, the stabiliz-
ing gradient also shifts the wave vector of the initial in-
stability from k =0 to a nonzero value.

DVF (also called the printer’s instability) has been
studied [1-7] with the apparatus illustrated schematical-
ly in Fig. 1 in which a small amount of oil is placed be-
tween two glass cylinders separated at the bottom by a
small adjustable gap of thickness b,. (A review of earlier
investigations of various coating-flow instabilities, includ-
ing DVF, can be found in Refs. [6] and [8].)

Previous experiments with this apparatus have
identified several dynamical regimes exhibiting stationary
cells, traveling cells, solitary waves, and spatiotemporal
chaos as indicated in the state diagram of Fig. 2 (from
Ref. [3]). In these experiments, it was found that if the
rotational velocity of the inner (or outer) cylinder is in-
creased with the other cylinder stationary, there is a criti-
cal rotation velocity V¥, (which increases linearly with b))
at which the planar oil-air interface undergoes a super-
critical bifurcation to a stationary cellular pattern. Fur-
ther increase of V causes the amplitude of the cells to in-
crease while their wavelength decreases, but the cells
remain stationary, and left-right symmetry is preserved at
all accessible values of V. If the inner cylinder velocity is
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set well above V, and the outer cylinder is then set into
counter-rotation (as indicated by the downward arrow A4
in Fig. 2), another bifurcation occurs immediately to a
broken-parity traveling cell regime [4].

Following the discovery of a “tilt bifurcation” in direc-
tional solidification experiments of a nematic-isotropic
liquid-crystal interface by Simon and co-workers [9,10],
several theoretical analyses have appeared, mainly based

FIG. 1. Sketch of the DVF apparatus showing the two
cylinders and the menisci. Inner glass cylinder is 38 cm long
and of radius R; =33 mm (precision +£0.01 mm). The outer
Pyrex cylinder is 42 cm long and of radius R, =50 mm (pre-
cision £0.03 mm). The fluid used is Rhodorsil silicone oil
47V100 (dimethyl polysiloxane) p=0.965;7(25 °C)= 100 mm?*/s.
The width of the oil layer (viewed from below) is ~ 5 cm.
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FIG. 2. State diagram of one interface in the (V,,V;) plane
with by=0.37 mm. The observed dynamical regimes are la-
beled SC (stationary cells), TC (traveling cells), SW (solitary
waves in gray), STC (spatiotemporal chaos) (from Ref. [4]).

on amplitude (or time-dependent Landau) equations,
which predict that as the control parameter increases, a
first bifurcation to a cellular state should appear, fol-
lowed by a secondary “tilt bifurcation” to a broken-
parity traveling cell state. Although this scenario does
occur in directional solidification where domains of trav-
eling cells or solitary propagating cells appear in trans-
forming liquid crystals [9,10] or solidifying eutectic alloys
[11-13] as the pulling speed is increased, it has not been
thought to apply directly to DVF since increasing the
primary control parameter V; produces a planar-cellular
bifurcation, but the tilt bifurcation does not occur as a
steady state unless the second control parameter V, is
also increased to a nonzero value. (A tilt bifurcation may
occur as a transient with ¥V, =0, however, following a
sudden increase in V; [5].)
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FIG. 3. Region of the state diagram explored in the present
investigation. Horizontal trajectories: (1, v, =0), (2, v,=0.1),
(3, v,=0.25). Vertical trajectories: (A1, v;=2.1), (A2,
v;=2.6).
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The main experiments described in this paper were
performed somewhat differently than previous experi-
ments in that the outer cylinder was first set into steady
rotation at a selected speed V,, well below ¥V, and V; was
then gradually increased (or decreased) along one of the
horizontal trajectories indicated by (2) or (3) in Fig. 3. In
these experiments, with V,=>0.1V,, successive planar-
cellular, cellular-propagating, and spatial period-doubling
bifurcations were found to occur.

We view the slow rotation of the outer cylinder in
these experiments as fixing a boundary condition rather
than as a second control parameter. The qualitative
difference between trajectory (1) (¥,=0) and the other
horizontal trajectories (2), (3) (¥,50) is that rotation of
the outer cylinder introduces a wetting layer so that the
interface is confined between two wet boundaries, while
then ¥,=0, the outer boundary is dry. This qualitative
difference is the probable origin [14] of the “bifurcation
at zero” observed in previous experiments following the
downward vertical trajectory A of Fig. 2 [4].

II. EXPERIMENTS

Two series of experiments were performed with the ap-
paratus shown schematically in Fig. 1, the first with
by=0.5 mm, and the second principal series with
b,=0.7 mm. The (v;,v,) trajectories followed in these
experiments are indicated in Fig. 3. Note that the veloci-
ties of the inner and outer cylinders V; and ¥V, have been
replaced by dimensionless velocities v; and v,, scaled to
the planar-cellular bifurcation threshold velocity V, for
single-cylinder rotation (¥, =74 mm/s for b;=0.5 mm,
V.=115 mm/s for b,=0.7 mm). These primary bifurca-
tion: threshold values, and the secondary bifurcation
threshold values as well, are somewhat sensitive to the oil
level which changes with time because of a slow oil leak
in the apparatus. Furthermore, minor imperfections in
the cylinders and their alignment also cause small time-
dependent changes in the interface profile which are par-
ticularly evident close to threshold. Consequently, the
data trend to exhibit considerable scatter for values of v,
and v, close to the bifurcation thresholds.

In the first set of experiments, the horizontal v, =0 tra-
jectory (1) in Fig. 3 was explored initially, followed by
several vertical trajectories (A1, 42,...). In the second
set of experiments, several horizontal trajectories
(2),3), . .. were studied with v, fixed at 0.1,0.25, ... re-
spectively.

A. v, =0 trajectory (1)

Figure 4 shows a sequence of interface profiles ob-
tained with the outer cylinder stationary, and the inner
cylinder rotating with (dimensionless) speeds v; between
1.0 and 3.33. As v; increases, the wavelength A decreases,
while the peak-to-peak amplitude increases. The front,
which is sinusoidal for velocities just above threshold, be-
comes increasingly distorted with increasing v; and, at
v;~1.25, becomes reentrant. For v;>2.0, the front
resembles a series of Saffman-Taylor air fingers separated
by oil walls which become progressively thinner as v; in-
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FIG. 4. Observed interface profiles for trajectory (1) (v, =0)
for spacing b, =0.7 mm, with (top to bottom) v; =1.00 (a), 1.02
(b), 1.07 (c), 1.28 (d), 2.32 (e), and 3.33 (f). In these images, the
air is above the oil. The scale is in centimeters.

creases [2]. The evolution of the interface profile contin-
ues in this manner up to v; =10.0, the highest value stud-
ied in this experiment, with no evidence of an approach-
ing second bifurcation. In a previous experiment, v; was
increased up to 50 with similar results [3].

Following a rapid increase of v;, the pattern usually ad-
justs by tip splitting with some shifting of cells. Oc-
casionally, we observe a transient domain of slowly drift-
ing tilted cells which eventually dies out. In either case,
the stationary patterns consist of regular symmetric verti-
cal cells which do not move (stationary cells).

The domains of slowly drifting tilted cells do not create
or destroy existing stationary cells but do modify their
size [S5]. They have recently been designated as “tilt
domains” by Faivre and Mergy [11] and also closely
resemble the ‘solitary modes” described by Simon,
Bechhoefer, and Libchaber [9] and Flesselles, Simon, and
Libchaber [10]. These tilt domains are dynamical defects
which provide a wavelength-selection mechanism. Re-
cent eutectic solidification experiments [11,12] have also
revealed stable homogeneous space-filling tilted traveling
cell states similar to those we will describe below.

Several series of charge-coupled-device video images
similar to those shown in Fig. 4 were recorded with a
Macintosh IIx computer. Preliminary analysis showed
that the measured amplitudes and wavelengths were not
reproducible for settling times less than ~ 30 min, espe-
cially close to threshold. The experiments discussed here
therefore all allowed settling times of at least 30 min, and
even longer near threshold. For each run, the printed im-
ages were measured to determine the wavelength and am-
plitude. As seen in Fig. 5(a), the peak-to-peak (p-p) am-
plitude increases rapidly with increasing v;, essentially sa-
turating near 12 mm. Also, as seen in Fig. 5(b), after a
brief increase [15], the wavelength decreases rapidly at
first, then more slowly, as observed in previous experi-
ments [1].

Digitized interface profiles were Fourier analyzed with
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FIG. 5. p-p amplitude (a) and wavelength (b) vs v; on trajec-
tory (1) (v, =0) for spacing b, =0.7 mm.
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FIG. 6. Spatial FFT of interface profiles (for spacing b, =0.5
mm) showing in arbitrary units the amplitudes (p-p) of the fun-
damental and first harmonics for v;=1.05 (a) and v;=1.18 (b)
with v, =0. Note the dominance of the odd harmonics in (b).
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a fast-Fourier-transform (FFT) computer program, and
the amplitudes of the fundamental and first four Fourier
harmonics were extracted to determine the harmonic
content of each pattern. Two such Fourier spectra are
shown in Fig. 6. Note the dominance of odd harmonics
at v;=1.18. The values of 4,/ A, for n =2, 3, 4, and 5
at values of v; up to 1.25 (where the patterns become
reentrant) were plotted, and we found that while the con-
tent of odd harmonics (45/A4, and A5/ A,) increase
with increasing v;, the even harmonics (A4,/A4, and
A,/ A;) decrease.

B. Vertical trajectories ( 4)

When v; is set well above threshold and v, is increased
from zero in counterrotation [trajectories A1 (v;=2.1)
or A2 (v;=2.6) in Fig. 3], propagating regions appear
separated by transient locally chaotic regions. After
about 10 min, the pattern becomes uniform, although
often there are regions of coexisting left- and right-
traveling cells separated by a source or sink which per-
sists for long times. Within each domain one finds a reg-
ular array of cells within a constant drift speed v,.

In each sequence of type A, v; was set to a selected
value, and v, was increased in steps. After each step, the
pattern was allowed to settle before being measured. Fig-
ure 7 shows a set of images for one such sequence with
v;=2.1, v, =0, 0.05, 0.1, 0.19, 0.58, 0.77, and 0.96. At
very small v, (<0.05), the cells tilt, breaking the left-
right symmetry, and begin to travel with drift speed v,,
becoming progressively more asymmetric. Their drift

FIG. 7. Interface profiles for v;=2.1 (trajectory A1) with
v, =0 (a), 0.05 (b), 0.1 (c), 0.19 (d), 0.58 (e), 0.77 (), and 0.96 (g).
Spacing is by =0.5 mm.
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speed v, increases with increasing v,, reaches a max-
imum, and then decreases as the cell amplitude decreases.
Eventually, the cells again become stationary, before
disappearing as the trajectory approaches the boundary
of the stable (planar) region in Fig. 2 and restabilizes
(v,>1). In an extensive set of such experiments we
found that at fixed v;, in the region below the maximum
invg, vy~ (,)"?

C. Horizontal trajectories with v, #0

The principal set of experiments was performed with
by, =0.7 mm and the external velocity v, fixed successive-
ly at v,=0.10, 0.18, 0.25, 0.35, 0.42, and 0.50. With v,
fixed, v; was increased (or decreased) in small steps along
one of the horizontal trajectories (2),(3), in Fig. 3. These
experiments, which we will describe here in some detail,
showed that for such horizontal trajectories the system
exhibits three successive bifurcations with no observable
hysteresis, at v; =v,, v.,, and v, respectively.

Figure 8 shows a series of interface profiles for v;
values along the horizontal trajectory (2) of Fig. 3, with
v, =0.10. The first three are beyond the primary planar-
cellular bifurcation at v, and exhibit stationary cells.
The fourth, with v; =1.39, is just beyond the second (tilt)
bifurcation at v;=v,,~1.38, and consists of traveling
small tilted cells (S cells) with drift speed v;=3.1
mm/sec and average wavelength A=14.8 mm.

As v; is further increased, A, which initially decreases
smoothly with increasing v;, suddenly increases near
v;=v,3=1.52, approximately doubling the cell size. This
S-L bifurcation is characterized by the appearance of
highly asymmetric rapidly moving large cells (L cells)
seen in Fig. 8(f) at v;=1.56. (Note that in the vertical
trajectory sequence A4 1) shown in Fig. 7, the S-L bifurca-

FIG. 8. Interface profiles for the horizontal trajectory (2)
v, =0.10 and spacing b,=0.7 mm, v;=1.17 (a), 1.26 (b), 1.33
(c), 1.39 (d), 1.50 (e), 1.56 (f), 1.94 (g), and 4.44 (h). The tilt bifur-
cation occurred near v; =v,.,=1.38, between (c) and (d). The S-
L bifurcation occurred near v; =v.;=1.52, between (e) and (f).
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tion occurs in reverse between v, =0.58 and 0.77.) With
further increase of v;, A again decreases monotonically
while v; continues to increase. The interface profiles ob-
served at v;=1.61 and 2.78, despite their very different
shapes, are both uniform traveling cell states as seen in
the spatiotemporal plots of Fig. 9.

In Fig. 10, the wavelength A is plotted against v; for
the horizontal trajectories (1; v, =0) and (2; v,=0.10).
The figure shows the jump in A for v, =0.1 near v;=1.5,
while for v, =0, A decreases monotonically.

The wavelengths and drift speeds of the S cells and L
cells measured with higher resolution for three trajec-
tories v, =0.10, 0.25, and 0.35 are shown in Figs. 11 and
12, respectively. At v,=0.10, the wavelength of the S
cells decreases rapidly with increasing v;; for larger v, the
decrease is slower.

The S cells have relatively well-defined wavelengths
(particularly at large v,) but considerable scatter in their
drift speed which shows little or no dependence on v;.
This scatter is probably due to slight imperfections in the
outer cylinder which induce a periodic modulation in v,
of about 20% as shown in Fig. 13.

In contrast to the S cells, it is evident in Fig. 11 that
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FIG. 10. Wavelength A vs v; for v, =0 (@) and v, =0.1 (X).
Spacing is bo=0.7 mm.

FIG. 9. Images (top) and single video-line
spatiotemporal records (bottom) for (a)
v, =0.1, v;=1.61, and (b) v,=0.1, v;=2.78 on
the horizontal trajectory (2). Time advances
downward in both spatiotemporal records
which display the time evolution during 32 s.

close to the S-L bifurcation the L cells have considerable
dispersion in wavelength, while their drift speeds are re-
markably constant as seen in Fig. 12. Beyond the S-L bi-
furcation, the wavelength of the L cells decreases while
their drift speed increases monotonically. Beyond v, 3, no
further bifurcations were observed. From these experi-
ments, the partial state diagram shown in Fig. 14 was
constructed, showing the locations of vy, v,,, and v_; for
v, in the range 0.1 to 0.5.

Characterization of the bifurcations

Although the primary planar-cellular bifurcation at v,
is homogeneous, the second stationary cell-traveling cell
bifurcation at v_, and the third S cell-L cell bifurcation at
v.3 both occur through relatively complicated inhomo-
geneous mechanisms. The stationary cell-traveling cell
bifurcation at v_, can occur in two ways. For v, >0.25,
the first moving cells to appear are usually solitons, as
shown in Fig. 15. One or more such highly asymmetric
cells moves rapidly across the interface, destroying the
cells they cross, which are then reconstituted behind
them. The passage of these solitons does not produce any
obvious change in the dominant pattern, although the
distribution of cell sizes before and after the passage of
solitons has not been investigated quantitatively. Howev-
er, it has been shown previously that the phase of the un-
derlying stationary structure is not affected by the pas-
sage of solitons [3]. Presumably, this is because of a
memory effect introduced by the wetting film on the ro-
tating cylinders. For v, =0. 1, the appearance of traveling
cells occurs when a group of stationary cells tilts and be-
gins to drift as seen in Fig. 16, without destroying any of
the stationary cells.

For v, >0.1 and between v, and v_,, fast cells (solitons
or groups of L cells) can appear in addition to the dom-
inant S cells. Near v_3, L cells appear through the desta-
bilization of existing S cells. This destabilizing transition
is reversible and may occur periodically at the period of
the outer cylinder rotation, as shown in Fig. 17. Since
the number of cells is conserved, the boundary between
the small and large cells drifts at a speed Vj, given by

— ViAs—VsAp

T (2.1)

Vg

At larger values of v,, L cells frequently appear first at
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FIG. 11. Wavelength A vs v; for v,=0.10 (a), 0.25 (b), and
0.35 (c). “Stat” (@) refers to stationary cells, “Small” (X) to
small cells, “Large” (H) to large cells, and “Fast” (H) to either
solitons or isolated L cells occurring in the S-cell region be-
tween v, and v.;. Error bars represent the extreme of values
observed during 100 s.
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FIG. 12. Drift speed vy vs v; for v,=0.10 (a), 0.25 (b), and
0.35 (c). “Small” ( X) refers to small cells, “Large” (B) to large
cells, and “Fast” (M) to either solitons or isolated L cells occur-
ring in the S-cell region between v, and v.. Error bars
represent the extreme of values observed during 100 s.
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FIG. 13. Spatiotemporal record at v, =0.35 and v; =1.64, il-
lustrating the fluctuation in v, for S cells.

sources, and convert to S cells near a sink as seen in Fig.
18. Such sources and sinks appear and disappear fre-
quently, and a domain of traveling cells anywhere along
the front is equally likely to be found moving to the right
or left. The large rapidly moving cells on the right of
Fig. 18 transform continuously into narrow slowly mov-
ing cells at a boundary which can remain essentially fixed
for long times if source and sink are motionless. In gen-
eral, as these defects move, such boundaries are not fixed.
When the boundary is fixed, conservation of cells results
in the ratio v, /A being constant. These patterns of coex-
isting large and small cells persist for long times, eventu-
ally disappearing but reappearing again for as long as we
observed them (maximum of 2.5 h).

One interpretation of these mixed-cell regimes is that

Vs

.4 [ Stable
0 interface

Vel Y2

FIG. 14. Partial state diagram (zoom of Fig. 3) for the region
v, =0.1 to 0.5 indicating the three bifurcation lines at v, (@), v,
(+), and v.; (X) (lines are best linear fit of the data). The
points (A ) and crosshatched area indicate the region in which
groups of solitons like those shown in Fig. 15 are observed. v,
and v.; indicate the value of v; at which the first or last S cells
are observed.
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FIG. 15. Interface images before (a) and during (b) the pas-
sage from left to right of a solitary traveling cell (soliton). (c)
Spatiotemporal record spanning 128 s, showing the passage of
three groups of two or three solitons.

in this region of the state diagram the system has two
dynamical states which are almost equally stable, and it is
unable to select one or the other definitively. Competi-
tion between different stable nonequilibrium states in con-
vection experiments, possibly related to the mixed states
we have observed here, have been described by Kolodner
[16] and by Bensimon et al. [17].

As v; is further increased, these mixed states disappear

FIG. 16. 90 sec spatiotemporal record with »,=0.10 and
v; = 1.20 illustrating the spontaneous reversible tilt bifurcations
observed near v,,.
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and the observed L-cell interface again has a well-defined
wavelength and drift speed. Finally, we note two un-
resolved aspects of the bifurcation sequence requiring fur-
ther study. First, as Figs. 11 and 12 demonstrate, the
S-L bifurcation at v,; occurs with pronounced discon-
tinuities in both wavelength and drift speed. The data
are consistent with wavelength doubling, although the
large fluctuations close to v, ; prevent establishing this ra-
tio with precision. Nevertheless, we tentatively identify
the bifurcation at v_; as a spatial period-doubling bifurca-
tion. Second, there are occasional L cells and solitons ob-
served in the S-cell regime between v, and v.;. We have
included them in the drift speed plots in Fig. 12 as “fast”
[18].

FIG. 18.

Coexisting large and small cells at v,=0.25,
v; =1.78 separated by a stationary front. Interface profile (a);
32-s spatiotemporal record (b). The stationary front is pinned
by the sink visible at the left.
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FIG. 17. 162-s spatiotemporal record with
v, =0.10 and v; =1.28 illustrating spontaneous
periodic L-S transitions observed close to v,
synchronous with the outer cylinder rotation.

III. ANALYSIS

The experiments described in the preceding section
have established that in DVF with counter-rotating
cylinders with the velocity of the external cylinder v,
fixed, increasing the velocity of the inner cylinder v; from
zero results in three successive bifurcations: a primary
bifurcation at v,; from the planar front to a stationary
cellular front, then at v, a tilt bifurcation to traveling
tilted cells, and finally at v.; a spatial period-doubling bi-
furcation (with various transient or mixed regimes ob-
served near the bifurcation thresholds). In this section
we consider possible explanations for this bifurcation se-
quence.

The hydrodynamics and linear stability analysis of
directional viscous fingering was discussed by Hakim
et al. [1] for the cylinder-plane geometry, and was recent-
ly extended to the corotating two-cylinder geometry by
Michalland [6]. The theory closely resembles that of the
classic Saffman-Taylor problem [19,20], with the addition
of a stabilizing term due to the nonuniformity of the dis-
tance between the two boundaries. A brief description of
the linear stability analysis is given in the Appendix.

A plot of the resulting marginal stability curve for our
system with b,=0.7 mm and v, =0 is shown in Fig. 19.
We have also included the data of Fig. 5(b) in the figure.
Although the mechanism of wavelength selection above
the threshold is unknown, Fig. 19 indicates that the
selected wavelength lies in the large-k domain of the mar-
ginal stability curve (also see Refs. [1] and [6]).

The linear stability analysis results in solutions of the
equation

d&, (1)

T=.uk§k(t) (3.1)

for &(x,t)=y(x,t)—{y(x,t)), the deviation of the front
position y(x,t) from its mean position (y(x,?)). The
values of V; for each k at which u, passes through zero
define the marginal stability curve. In order to extend
the analysis to the nonlinear region inside the curve,
higher-order terms must be included. However, a non-
linear hydrodynamic analysis for DVF, which is required
to describe the evolution of the interface beyond thresh-
old, does not yet exist.

An alternative approach to the nonlinear regime, wide-
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FIG. 19. Computed marginal stability curve for b, =0.7 mm
(.), and most unstable mode (+) superimposed with experimen-
tally selected wave number (®) of Fig. 5(b) for V,=0.

ly used to describe front instabilities, is the phenomeno-
logical amplitude (or time-dependent Landau) equation
for &(x,z). The simplest phenomenological amplitude
equation, for a single Fourier component £, (2), is

dgk(t)
dt

=&, (t)—a,&3(t)+ (higher-order terms) ,

(3.2)

where k is taken to be the most unstable wave vector cor-
responding to the minimum of the marginal stability
curve at ¥V =V_, k =k_ (point C in Fig. 20). If a;>0, a
supercritical (normal) bifurcation occurs when pu;
changes sign at V=V, and £, subsequently increases
with p}/2. Equation (3.2) can only be valid very close to
V,.; however, since once &, becomes large enough for

AV

c k

FIG. 20. Schematic marginal stability curve illustrating the
initial instability point (C) at (k.,V,.). Points (F) and (F')
represent the k and 2k modes in the tilt bifurcation scenario of
Fauve, Douady, and Thual [27]. Points (R) and (R’) are the k
and 2k modes at the codimension-2 point.
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nonlinear terms to intervene, these terms will also result
in mixing of different Fourier components. Equation
(3.2) can be generalized either by allowing &, to be a
slowly varying function of x and including spatial deriva-
tives in the amplitude equation (time-dependent
Ginzburg-Landau equation), or by including more than
one Fourier component in &(x, ).

Malomed and Tribelsky [21] analyzed several non-
linear amplitude equations, using trial solutions of the
form &(x,t)= A,(t)sinkx + A,(t)cos2kx+ ---. They
discovered that following the initial bifurcation to the
stationary pattern £(x,?)= A4, sinkx, there would be an
increasingly important admixture of 4, and a secondary
bifurcation to a state with cells traveling with a constant
velocity. The secondary bifurcation was shown to arise
from the fact that u,, the linear gain coefficient of the
cos2kx term, which is negative, increases toward zero as
the control parameter increases.

Several authors have analyzed the most general ampli-
tude equations, including all terms through third order
allowed by symmetry, for the two-mode trial function

E(x,t)=z, " +z,e?*+c.c. (3.3)
The coupled amplitude equations are
dz, * 2 2
o =uz,+cztz, +a,z 21>+ b,z,|2,]*,
dz (3.4)
2
= THe +cy22 +b,yz,l2, [P ayz,lz, % .

Letting z, =pe'®, z,=ce'® (with p and o real), and
3=2¢—0, Egs. (3.4) reduce to

%f—=ylp+alp3+blazp+c,apcosz , (3.5a)
do _ 2 3 2

—d;——~,u20+b2p o+a,0°+c,p°cosZ , (3.5b)
%z —(c,p*/0+2c,0)sinZ , (3.5¢)
%q:—:-—clo sin¥ . (3.5d)

Jones and Proctor [22,23] used these equations to in-
vestigate traveling waves in Bénard convection. Levine,
Rappel, and Riecke [24-26] used them to explain the
parity-breaking tilt bifurcation observed in the direction-
al solidification experiments of Simon and co-workers
[9,10]. Rappel and Riecke [26] also solved the basic
solidification equations numerically and compared the re-
sults with the predictions of the amplitude equations.

Equations (3.5) have three different types of steady-
state solutions [26]: pure 2k modes (S,), stationary
mixed k-2k modes (S,,S_), and traveling cell modes
(T). Figure 21, based on the results of Jones and Proctor
[22], shows a schematic (partial) bifurcation diagram for
Eqgs. (3.4) in the space of the two linear gain coefficients
p; and u,. (The shape of the boundaries depends on the
choice of the coefficients.)

Fauve, Douady, and Thual [27] considered a scenario
in which the initial instability occurs for k =k_ at point
(C) in Fig. 20. As V increases, and p, becomes more pos-
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T (R)
S-
FIG. 21. Schematic bifurcation diagram from Egs. (3.4)

based on Ref. [22]. S,: pure 2k mode. S.,S_: stationary
mixed k-2k modes. T: traveling cell mode. Modes shown in
parentheses are allowed but unstable. The dashed lines R and F
are the trajectories discussed in the text.

itive, the fundamental amplitude p of the stationary pat-
tern increases, while the harmonic amplitude o increases
as p°. The stationary pattern is eventually destabilized
and undergoes a secondary supercritical bifurcation to a
tilted traveling-wave state (drift bifurcation) when u, (as-
sumed negative) increases and becomes sufficiently close
to zero, as first noted by Malomed and Tribelsky [21].
Above the threshold the pattern consists of tilted waves
which drift with a constant speed v,.

In Fig. 21, this trajectory is represented by the line F.
As V increases to the point where p; becomes positive,
the flat interface bifurcates to the stationary mixed mode
S _; on crossing the lower curved boundary, the S_
mode becomes unstable and the second bifurcation
occurs to the traveling cell mode 7.

For directional viscous fingering with one cylinder
fixed, the secondary bifurcation to a steady-state travel-
ing cell mode does not occur. As discussed above, in-
creasing the inner cylinder rotation velocity to 50 times
threshold still produces stationary symmetric cells. And
as shown in Fig. 6, for v, =0 the amplitude ratio of the
second harmonic to the fundamental decreases with in-
creasing v; rather than increasing. As v; increases, the
dynamically selected wavelength decreases, remaining
close to the boundary of the marginal stability curve, as
shown in Fig. 19, so that the 2k mode always remains far
outside of the marginal stability curve, in the stable re-
gion.

If v; is increased abruptly, however, starting from a
point just above threshold, then before the wavelength
has time to adjust the system can move to a point F (Fig.
20) close to the midline of the stability curve so that u,
can be much closer to zero. A tilt bifurcation can then
occur as a transient, until k has time to readjust. This
scenario, which was discussed by Fauve, Douady, and
Thual [27], presumably explains the observed transient
drifting states observed with v, =0 [5].

Rappel and Riecke [26] (also see [23-25]) considered
bifurcation sequences that can occur in the vicinity of the
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codimension-2 point (R-R’ in Fig. 20) where both the k
and 2k modes become linearly unstable simultaneously.
Transitions between the three solutions of Egs. (3.5) can
occur in various ways, depending on the values of the
coefficients. In particular, in our experiments, if the ini-
tial instability at (C) in Fig. 20 is designated as 2k, then
with increasing v; the system approaches point (R') in-
side the curve and the k mode at (R) approaches instabil-
ity. This corresponds to the trajectory R in Fig. 21 where
the flat interface bifurcates to the pure 2k mode (S,)
when u, changes sign, followed by secondary bifurcations
to the mixed state S, and then to the traveling cell state
T. This approach, in contrast to that of Fauve, Douady,
and Thual predicts first a spatial period-doubling bifurca-
tion and then a tilt bifurcation.

However, neither the scenario of Fauve (F) nor that of
Rappel and Riecke (R) can explain the bifurcation se-
quence observed in our experiments, because the wave-
length of the pattern is always determined by the smallest
wave vector present. Thus, in the scenario F, the wave-
length of the pattern with fundamental k is always
A=2w/k, and is not changed by the admixture of the 2k
component. The tilt bifurcation occurs with no change in
wavelength (as we observed), but no period-doubling bi-
furcation is possible.

In the scenario R, it is possible for the initial planar-
cellular bifurcation to produce a pure 2k state S, with
wavelength A=m/k at point (R) which can then bifur-
cate to the stationary mixed state S, and then to the
traveling-wave state 7. But the admixture of the k mode
will cause the wavelength to double to A=2/k, so that a
tilt bifurcation without change in wavelength cannot
occur.

We therefore conclude that k-2k models cannot ex-
plain the bifurcation sequence observed in the DVF ex-
periments. We propose that the simplest model that can
possibly explain the sequence of three bifurcations will re-
quire three modes rather than two, i.e.,

E(x,t)=z "+ 2,6+ 7,0t c. (3.6)

With this trial function, the initial mode would be z,,
with an increasing admixture of z, that would eventually
lead to a tilt bifurcation without change in wavelength (as
in the scenario F), followed by another bifurcation to a
state containing some z;, which would then produce spa-
tial period doubling.

The amplitude equations for this case, including all
terms through third order allowed by translational in-
variance, are

dz, — * 2 2

7—p121+c12,22+a121|zl| +b,z¢l2,]
+dz|z4|?+e z¥232,

dz, 2 * 2

o THe +eyztte,z,25 +byz,lz |
+ayz, 2,12+ dyz,y |24 |2+ fazaz TP

dZ4

Tdr s tegz3+byzlz 1Pt auz,lz,|?

+dyzylz,|?+eyz2z, (3.7)
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An analysis of these amplitude equations and of the

possible bifurcation sequences they allow has not yet been
undertaken.
Note added in proof. Due to a small shift in the oil viscos-
ity, the dimensionless parameter v; of Figs. 8 and 9 are
are overestimated by a factor of 1.16. We thank P. Ko-
lodner for pointing this out to us.
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APPENDIX: LINEAR STABILITY ANALYSIS

We will now present briefly a linear analysis of DVF.
More details can be found in Refs. [1] and [6]. The flow
of a single fluid located between eccentric rotating
cylinders of similar radius can be solved in the lubrica-
tion approximation. The analysis for any radius with
inertial corrections can be found in Ballal and Rivlin [28].
For our purpose it is sufficient to consider the narrow re-
gion as parabolic with a thickness b (x) given by

x* 1 _ 1 1

b(x) b0+2R with R——R,- R, ’
where R is the equivalent radius of the inner (R;) and
external (R,) cylinders and x is an orthoradial abscissa.
Velocity being mainly orthoradial, it is a superposition of
a planar Couette profile and of a parabolic Poiseuille
profile due to the pressure gradient. (The pressure is
found to obey a diffusionlike equation.) Integrating this
pressure equation, the flow rate between the cylinders is
found to be

2bg
Q=—3"(V,-+Ve) .

In the case of two fluids in the system, surface-tension
corrections are found to be unimportant in the deter-
mination of Q [1].

It is more difficult to determine the position of the
meniscus. In a two-dimensional model and with station-
ary experimental conditions, oil conservation gives the
relation Q =Q; +Q, between the total flux Q and the two
fluxes carried by the coating films on the two rotating
cylinders. This coating flux (positive or negative) is given
by the product of the boundary velocity by the thickness
of the film far from the meniscus: Q;=V;t; and
Q.=V,t,. For V,=0, Q,=0 so the conservation of oil
gives a constant value for ¢;. This conclusion is contra-
dicted by experiments as ¢; is observed to increase with
the surface velocity V;. We believe that this discrepancy
is due to a three-dimensional effect with a transverse oil
flow coming from the ends, and we will not take this
effect into account here.

Until now we have no data for the global evolution of
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the position of the meniscus with the two velocities V;
and V,. Therefore, for the following analysis, we will
suppose that one cylinder is at rest (e.g., ¥, =0) and that
the position of the initially planar meniscus is given by a
dimensional relation, as in the problem of the coated film
drawn by an infinite plane: ¢t =F(Ca)b,,, where b, is the
thickness of the gap where the meniscus is located,
Ca=nV /T is the capillary number, and F is a function
taken from a fit of our experiment and the compilation by
Ruschak [8] of other experiments [29]. We take as a best
fit in our range 0 < Ca <2:

F(Ca)=0.24[1— exp(—8.6Ca%/3)] .

This relation gives the location of the meniscus for ¥V, =0
by

_ 2bg
™~ 3F(Ca)

Once the locus of the meniscus is determined, the
linear analysis follows. For any Fourier mode, the equa-
tions of the pressure field, velocity field, and conservation
of fluid at the moving interface are linearized. Assuming
in order to be analytic that

ob

dx

b

1
b

is constant along the profile (which is not really the case
as it requires locally an exponential thickness profile), the
growth rate u of the mode of wave number k is found to
be

T™ (k) by boG
k,Ca)=——————— |Ca |6—8— —8——
Wk Ca) = = Feca)] |27 %%, ¥z
—2G —b,%,kZ] , (A1)
where
— |9
dx X

at the meniscus location, and
M(k)=%[(l+H2k2)‘/2—1]

with

2b,,

3G

It is worth noting that at constant capillary number

Ca, the quantities b,,, G, and H are constant and so the
sign of the growth rate is given by the sign of the right-
hand part of Eq. (A1). It is now simple to construct the
marginal stability curve by solving u(k,Ca)=0 (Fig. 19).
For any Ca the most unstable mode k. is given by
doup/0k =0. We found that

kc=(x/s—1+x7s+1)bi

m

2Ca

with § =251 —2F(Ca)]— 2 .
G

3G
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FIG. 13. Spatiotemporal record at v, =0.35 and v; = 1.64, il-
lustrating the fluctuation in v, for S cells.
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FIG. 15. Interface images before (a) and during (b) the pas-
sage from left to right of a solitary traveling cell (soliton). (c)
Spatiotemporal record spanning 128 s, showing the passage of
three groups of two or three solitons.



FIG. 16. 90 sec spatiotemporal record with v, =0.10 and
v; = 1.20 illustrating the spontaneous reversible tilt bifurcations
observed near v,,.



FIG. 17. 162-s spatiotemporal record with
v, =0.10 and v; =1.28 illustrating spontaneous
periodic L-S transitions observed close to v,
synchronous with the outer cylinder rotation.




FIG. 18. Coexisting large and small cells at v,=0.25,
v;=1.78 separated by a stationary front. Interface profile (a);
32-s spatiotemporal record (b). The stationary front is pinned
by the sink visible at the left.



FIG. 4. Observed interface profiles for trajectory (1) (v, =0)
for spacing b, =0.7 mm, with (top to bottom) v; =1.00 (a), 1.02
(b), 1.07 (c), 1.28 (d), 2.32 (e), and 3.33 (). In these images, the
air is above the oil. The scale is in centimeters.



FIG. 7. Interface profiles for v;=2.1 (trajectory A1) with
v, =0 (a), 0.05 (b), 0.1 (c), 0.19 (d), 0.58 (e), 0.77 (), and 0.96 (g).
Spacing is by =0.5 mm.



FIG. 8. Interface profiles for the horizontal trajectory (2)
v,=0.10 and spacing by =0.7 mm, v;=1.17 (a), 1.26 (b), 1.33
(c), 1.39 (d), 1.50 (e), 1.56 (f), 1.94 (g), and 4.44 (h). The tilt bifur-
cation occurred near v; =v., = 1.38, between (c) and (d). The S-
L bifurcation occurred near v; =v.;=1.52, between (e) and (f).



FIG. 9. Images (top) and single video-line
spatiotemporal records (bottom) for (a)
v,=0.1, v;=1.61, and (b) v,=0.1, v;=2.78 on
the horizontal trajectory (2). Time advances
downward in both spatiotemporal records
which display the time evolution during 32 s.



